If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60n^2+54n=0
a = 60; b = 54; c = 0;
Δ = b2-4ac
Δ = 542-4·60·0
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-54}{2*60}=\frac{-108}{120} =-9/10 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+54}{2*60}=\frac{0}{120} =0 $
| 8a+74=2a+56 | | 12x^2+5x+10=17x^2+10 | | 12v-v-10v=20 | | 12.92-x=11.97 | | (t^2-2t)^2+6(t^2-2t)=7 | | 8a+6=4a+38 | | 8a-8=5a+25 | | 7/15x=14/5x= | | 13j-12j+5j=6 | | d/6=134 | | 9/7+x=3 | | x3⋅=11 | | 20p-16p=8 | | (2a+33)+(3a+20)=113 | | 8.00x+0.25=1.25 | | 0=x2+7x+2 | | (6a-12)+(3a+30)=90 | | 1.25x+0.25=8.00 | | 2x^2-6x-176=0 | | 6.5/z=13 | | (2a+50)+(6a+2)=180 | | n÷17=3 | | X/7+x/3=8 | | 2+√x=5 | | 2x^2-84x=0 | | 54=18*x | | (4x-2)/(6-3x)=6-2x | | 54=•x | | 43m+37=51+2m | | 5(7)^-6x=7 | | 9m +32 =73 | | 9/m+3/2=7/3 |